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Abstract
For a two-ion plasma system the electrostatic drift
modes have been discussed as it is affected by the
presence of non-Maxwellian electronic distributions,
namely kappa and Cairns velocity distributions. An-
alytical solution of the eigenvalue problem is derived
for the global drift modes by considering a cylinderi-
cal bounded plasma and the corresponding eigen fre-
quency has been obtained. For the D-T plasmas, the
eigen frequency has a larger value for the Cairns distri-
bution, intermediate for Maxwellian and smallest for
kappa distributed electrons. The influence of mag-
netic shear on wave propagating has also been exam-
ined for a system with absorbing boundaries. It is ob-
served that in the linear limit the perturbed potential
distribution is not affected by non-Maxwellian nature
of electronic distributions, however the frequency of
the drift wave shows a significant deviation from its
Maxwellian counterpart.

Introduction
The ordinary plasmas are composed of electrons and
single ions, however many of interesting plasmas con-
sist by two-ion species, e.g. the fusion fuel contains
D-T ( Deuterium and Tritium ) ions, the pinch devices
constituted by Ne-Ar (Neon and Argon) and the so-
lar corona which is a composition of H-He (Hydrogen
and Helium) ions.
Drift modes are one of the most important plasma
waves, which are induced by minimal-scale instabilities
correlated with drift motions. The drift motions are
induced by density and temperature inhomogeneities
and the resulting eigenmodes are called drift waves.
Usually, the most significant drift waves have real fre-
quencies having a value which is two orders of magni-
tude less than the ion cyclotron frequency. The study
of such low-frequency wave modes, induced by the
gradient of plasma density and shear flows, began al-
most four decades ago. The drift modes can create
instability in the system and participate in particle and
energy transport. Analysis of low-frequency waves in
cylindrical laboratory plasmas with definite scale den-
sity gradients, has also found a lot of interest in recent
years.
In Ref.[1], the authors considered cylindrical bounded
two-ion plasmas and solved the eigenvalue equations
analytically for the drift mode. The particle distribu-
tion functions (VDFs) as observed in various satellite
quests in astrophysical and space plasmas show signif-
icance deviation from Maxwellian. It is indicated that
VDFs are quasi-Maxwellian at thermal velocities, and
exhibit non-Maxwellian at higher speeds. These nom-
inated, that in the magnetospheres of Saturn, Uranus,
Mercury, Earth and in the solar wind non-Maxwellian
plasmas have been reported in various studies. Such
Lorentzian or kappa distributions are specified by spec-
tral index κ such that in the large κ limit Maxwellian
distribution is achieved. Almost two decades ago, an-
other non-Maxwellian distribution called the Cairns
distribution[2] was successfully used to describe the
solitary electrostatic waves, on the ion time scale, de-
tected by different satellite missions such as the Freja
and Viking satellites. In Refs.[3, 1] linear electrostatics
drift modes are studied in bounded (single and two-
ion) plasmas having Maxwllian electron distribution.
Here we discuss the linear electrostatics drift modes in
bounded two-ion plasma having non-Maxwllian elec-
tronic distributions. The corresponding eigen value
problems have solved and the effects of non-thermality
as well as magnetic shear have been discussed.

Basic equations
The equilibrium qausi-neutrality condition for such
plasma consisting of ions a, b and electrons, reads

na0 +nb0 = ne0 (1)

The ion equation of motion for j th species can be
writen as

mjnj (∂t + vj ·∇)vj = njqj (E + vj×B0ẑ) , (2)

where j=a,b for two-ions and E = -∇φ is the electric
field and all other terms have their usual meaning.
The linearized version of ion continuity equation can
be written as

∂tnj1 +nj0
(
∇⊥ ·vj1⊥

)
+ (∇⊥nj0) ·vj1⊥ = 0 (3)

By finding vj1⊥ from Eq.(2) and using in Eq.(3), we
will get
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For electrons we have assumed two different non-
Maxwellian density profiles, namely the kappa and
Cairns distributions. In the former case, the perturbed
electron density is given as
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2

, (5)

where κ (>3/2) is the spectral index measuring the
deviation from the Maxellian VDF, such that by in-
creasing the value of κ , the kappa distribution ap-
proaches to its Maxwellian counterpart. For the case
of Cairns VDF,we have [2]
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where β = 4Γ/(1 + 3Γ). For weak perturbation the
electronic density can be expanded as

ne1 = ne0

(
α1Φ + α2

Φ2

2

)
(7)

with Φ = eφ1/Te, for linear analysis α2 → 0 and
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 1−β (Cairns)
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thus, in the linear limit, we have

ne1 = ne0(α1Φ) (8)

For two-ions (a and b) system the perturbed form of
Poisson’s equation reads

∇
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φ1 = 4πe(ne1−na1−nb1) (9)

λ
2
De∇

2
∂tΦ−α1∂tΦ +

(
na0

Ωa
+
nb0

Ωb

)
Te

ne0eB0
∇

2
⊥∂tΦ−

Te

eB0

∇⊥ne0

ne0
· ẑ×∇⊥Φ+

Te

neoeB0

(
∇⊥na0

Ωa
−∇⊥nb0

Ωb

)
·∇⊥∂tΦ = 0,

(10)

For Golbal drift mode in a cylinder we get the
potential as

Φ(r) = crp1H1
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where p is the poloidal mode number.

Effect of magnetic shear on
potential distribution

For our analysis we consider a shear magnetic field as
follows

B = B0

(
ẑ +

x
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ŷ

)
,

where Ls is the shear scale length. We get the poten-
tial profile in case of shear magnetic field as
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(
− icsax

2

2ρsav∗Ls

√
N2/N1

)
×exp

[
x

2N1ρ2
sa

(
v∗a
Ωa

+
v∗b
Ωb

)]
(12)

Results and Conclusion
Figures (a) for the case of unsheared magnetic field
while (b) for sheared magnetic field
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(a) Radial potential pro-
files presenting the amplitude
Φ(r) in curves 1-3. The
curves 4, 5 and 6 show,
respectively the equilibrium
density profiles of ions a, b
and electrons.
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(b) The potential profile for
(a) single ion plasma red
dashed curve and (b) two-ion
species solid blue curve.
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(c) Variation of frequencies
of the drift waves in a D-T
plasma for different values of
κ against plasma shape pa-
rameter a2
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(d) The frequencies of the
drift waves for D-T plasma
for different values of Γ (for
Cairns distributed electron)
against plasma shape param-
eter.

Conclusion
We have studied drifts modes in two-ion plasmas
having non-Maxwellian electronic distributions.

We have seen that the potential vanishes at cen-
ter and at the boundaries of the cylinder.

The Maxwellian distribution achieve by increasing
the value of κ , but in case of Cairns distribution

it is achieve by when Γ→ 0.

Magnetic field geometry plays a significant role.

The oscillatory behavior in the potential ampli-
tude is due magnetic shear, while the increase of
the potential amplitude is due to the density gra-
dient.
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